A dynamic multiscale viscosity method for the spectral approximation of conservation laws
نویسندگان
چکیده
We consider the spectral approximation of a conservation law in the limit of small or vanishing viscosities. In this regime, the continuous solution of the problem is known to develop sharp spatial and temporal gradients referred to as shocks. Also, the standard Fourier–Galerkin solution is known to break down if the mesh parameter is larger than the shock width. In this paper we propose a new dynamic, multiscale viscosity method which enables the solution of such systems with relatively coarse discretizations. The key features of this method are: (1) separate viscosities are applied to the coarse and the fine scale equations; (2) these viscosities are determined as a part of the calculation (dynamically) from a consistency condition which must be satisfied if the resulting numerical solution is optimal in a user-defined sense. In this paper we develop these conditions, and demonstrate how they may be used to determine the numerical viscosities. We apply the proposed method to the one dimensional Burgers equation and note that it yields results that compare favorably with the vanishing spectral viscosity solution. 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Chebyshev–legendre Spectral Viscosity Method for Nonlinear Conservation Laws∗
In this paper, a Chebyshev–Legendre spectral viscosity (CLSV) method is developed for nonlinear conservation laws with initial and boundary conditions. The boundary conditions are dealt with by a penalty method. The viscosity is put only on the high modes, so accuracy may be recovered by postprocessing the CLSV approximation. It is proved that the bounded solution of the CLSV method converges t...
متن کاملChebyshev–legendre Super Spectral Viscosity Method for Nonlinear Conservation Laws∗
In this paper, a super spectral viscosity method using the Chebyshev differential operator of high order Ds = ( √ 1− x2∂x) is developed for nonlinear conservation laws. The boundary conditions are treated by a penalty method. Compared with the second-order spectral viscosity method, the super one is much weaker while still guaranteeing the convergence of the bounded solution of the Chebyshev–Ga...
متن کاملA Finite Element, Multiresolution Viscosity Method for Hyperbolic Conservation Laws
It is well known that the classic Galerkin finite element method is unstable when applied to hyperbolic conservation laws such as the Euler equations for compressible flow. It is also well known that naively adding artificial diffusion to the equations stabilizes the method but sacrifices too much accuracy to be of any practical use. An elegant approach, referred to as spectral viscosity method...
متن کاملA Spectral Viscosity Method Based on Hermite Functions for Nonlinear Conservation Laws
We consider the approximation by a spectral method of the solution of the Cauchy problem for a scalar conservation law in one dimension posed in the whole real line. We analyze a spectral viscosity method in which the orthogonal basis considered is the one of Hermite functions. We prove the convergence of the approximate solution to the unique entropy solution of the problem by using compensate...
متن کاملOn the spectral vanishing viscosity method for periodic fractional conservation laws
Abstract. We introduce and analyze a spectral vanishing viscosity approximation of periodic fractional conservation laws. The fractional part of these equations can be a fractional Laplacian or other non-local operators that are generators of pure jump Lévy processes. To accommodate for shock solutions, we first extend to the periodic setting the Kružkov-Alibaud entropy formulation and prove we...
متن کامل